首页> 外文OA文献 >Improved Arabic-to-English statistical machine translation by reordering post-verbal subjects for word alignment
【2h】

Improved Arabic-to-English statistical machine translation by reordering post-verbal subjects for word alignment

机译:通过重新排列词后对齐主题以进行单词对齐,改进了阿拉伯语到英语的统计机器翻译

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study challenges raised by the order of Arabic verbs and their subjects in statistical machine translation (SMT). We show that the boundaries of post-verbal subjects (VS) are hard to detect accurately, even with a state-of-the-art Arabic dependency parser. In addition, VS constructions have highly ambiguous reordering patterns when translated to English, and these patterns are very different for matrix (main clause) VS and non-matrix (subordinate clause) VS. Based on this analysis, we propose a novel method for leveraging VS information in SMT: we reorder VS constructions into pre-verbal (SV) order for word alignment. Unlike previous approaches to source-side reordering, phrase extraction and decoding are performed using the original Arabic word order. This strategy significantly improves BLEU and TER scores, even on a strong large-scale baseline. Limiting reordering to matrix VS yields further improvements.
机译:我们研究了阿拉伯语动词及其主题在统计机器翻译(SMT)中的提出的挑战。我们证明,即使使用最先进的阿拉伯语依赖解析器,也很难准确地检测出语言后主题(VS)的边界。另外,VS结构在翻译成英文时具有高度模糊的重排模式,并且这些模式对于矩阵(主子句)VS和非矩阵(从属子句)VS有很大的不同。基于此分析,我们提出了一种利用SMT中的VS信息的新颖方法:将VS结构重新排序为词对齐之前的(SV)顺序。与以前的源端重新排序方法不同,短语提取和解码是使用原始阿拉伯语单词顺序执行的。即使在强大的大规模基准上,该策略也可以显着提高BLEU和TER分数。将重新排序限制为矩阵VS可带来进一步的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号